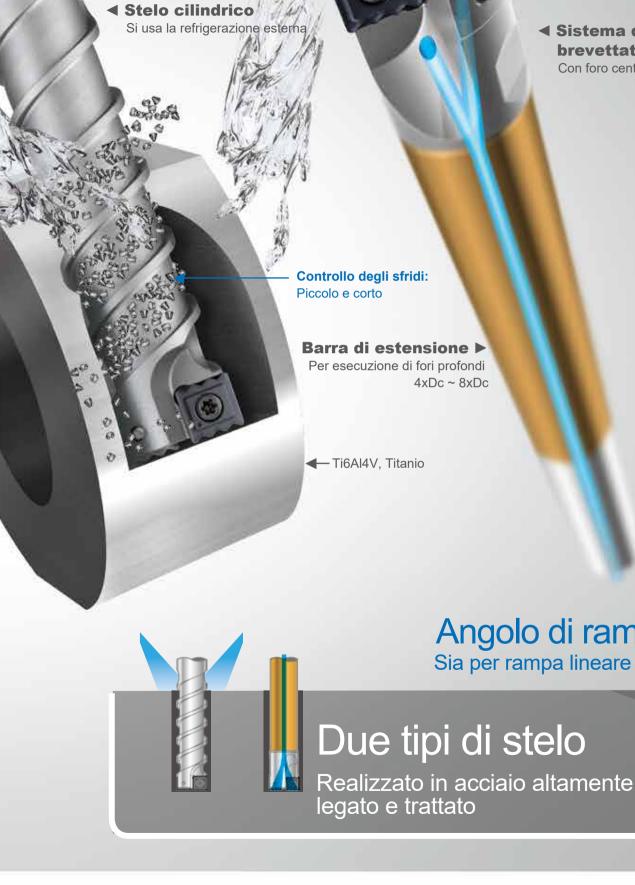


Punta elicoidale NC Helix Drill

Un Solo Utensile Per Molteplici Impieghi

Fresatura, Foratura e Scanalatura

Il foro è realizzato con interpolazione elicoidale


Riduce il Vostro stock di magazzino

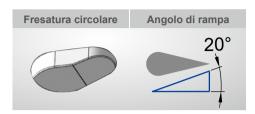
Solo quattro utensili per realizzare fori di Ø 13 - Ø 65 mm a partire da materiale solido.

Ogni utensile può lavorare diametri e profondità di foratura diverse, risparmiando sul vostro stock di magazzino e sui costi! Non è necessario l'avanzamento intermittente con scarico o sosta,

anche senza refrigerante interno.

Sistema di avvitamento brevettato

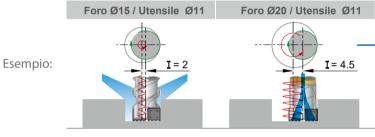
Con foro centrale per refrigerante


Angolo di rampa 20°

Sia per rampa lineare che circolare

20°

01


Minore assorbimento di potenza Facile lavorazione!

- Grazie al basso carico di taglio del tagliente seghettato e all'interpolazione elicoidale, è necessaria una minore potenza del mandrino.
- Fresatura circolare in rampa, massimo angolo di rampa 20°. Per esempio: per forare un Ø 50 con utensile HD27, passo 9 mm per alluminio, passo 6 mm per acciaio al carbonio.

02

Solo quattro utensili per realizzare fori di Ø 13 - Ø 65 mm

- ll foro è realizzato con interpolazione elicoidale.
- n solo utensile può forare vari diametri e profondità.
- Si può allargare il foro utilizzando utensili con la refrigerazione interna.

03

Geometria speciale dell'inserto per lavorare vari materiali

- Il tagliente seghettato rende il truciolo corto e piccolo, quindi più facile da evacuare.
- Elimina i problemi di evacuazione truciolo e vibrazioni durante la foratura di materiali di difficile lavorabilità o fori profondi.
- Eccellente controllo degli sfridi di lavorazione per una rimozione sicura e razionale dei trucioli per automazione moderna.

Principio

taggio

Caratte

Un solo Utensile per molteplici impieghi

- Non solo foratura, ma anche fresatura.
- Piccolo raggio di percorso per eseguire un foro o una lamatura di un foro, varie forme di cavità curve su vari materiali.

Funzionamento in condizioni variabili

Superfici regolari

Foratura parziale

Superfici concave

Superfici inclinate

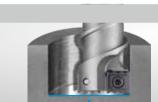
ristiche

Straordinario

Lamiere a pacco

Fori incrociati

Particolari tondi


Particolari conici

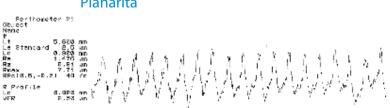
sul raggio

06

Misurazione della rugosità

Realizzare fondi piani con programmazione CNC, facile e veloce!

Pezzo


Eseguire "un'ulteriore interpolazione" dopo aver raggiunto la profondità. esempio:

G03 I-1.5 Z-30 P5

G03 I-1.5 < eseguire ulteriore rotazione >

G01 X0 Y0 < far tornare l'utensile al centro >

Planarità

Inserti

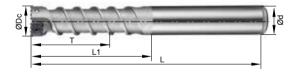
NC5072: P40, rivestimento TiAIN.

Impieghi generici, consigliato per quasi tutti i tipi di acciaio non trattati, acciaio inox e titanio.

Consigliato in caso di staffaggio poco rigido, di macchine poco potenti o forature profonde.

NC2032: K20F, rivestimento TiAIN.

Progettato per lavorazioni ad alte prestazioni, in particolare per ghisa e materiali temprati.

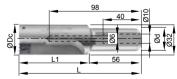

					,		•		● Migliore ◎ A	Adatto OPossibile	
	P Acciaio	M	Inox	K Ghisa	a N Allu	minio		S Tit	anio H	Temprato	
NC5072	•		•	0	((9	0	
NC2032	©		0	•	(0)	0	
Codico	Numero di p	a esta	Crada	Divectimente		Din	nensio	ni	Vita	Chieve	
Codice	Numero di p	oarte	Grado	Rivestimento		L	S	Re	Vite	Chiave	
041021	- 01-N9MX04T002	NC5072	P40	- TiAIN		4.75	1.8	0.2	*NS-18037	NK-T6	
041001	01-N9WX041002	NC2032	K20F	HAIN		4.75	1.0	0.2	0.6Nm	INIX-10	
042021	- 01-N9MX05T103	NC5072	P40	TiAIN	_	5.75	2.0	0.3	*NS-20045	NK-T6	
042001	01-1091012051 103	NC2032	K20F	HAIN	T Re	5.75	2.0	0.3	0.6Nm	INIX-10	
043021	- 01-N9MX070204	NC5072	P40	TiAIN		7.5	2.4	0.4	*NS-25045	NK-T7	
043001	01-N9WX070204	NC2032	K20F	HAIN	s		2.4	0.4	0.9Nm	INIX-17	
044021	04 NOMY400200	NC5072	P40	T: AINI		40.0	0.40	0.0	NS-30072	NIIZ TO	
044001	- 01-N9MX100306	NC2032	K20F	TiAIN		10.0	3.18	0.6	2.0Nm	NK-T9	
045021	- 04 NOMV42T209	NC5072 P40	TIAINI		12.5	3.97	0.0	NS-35080	NK-T15		
045001	01-N9MX12T308	NC2032	K20F	TiAIN		12.5	3.97	0.0	2.5Nm	1117-1113	

^{*}Si raccomanda un cacciavite dinamometrico.

Utensile

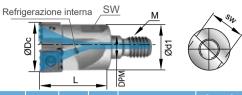
▶ Stelo cilindrico >>

- Realizzato in acciaio altamente legato e temprato 48 HRC.
- Particolare scanalatura elicoidale per evacuare il truciolo insieme al refrigerante.
- Progettato per macchine CNC con refrigerazione esterna.



Codice	Numero di parte	Tipo	Capacità di foratura Ø mm		ØDc	Т	L1	L	Ød	Tipo inserto	Angolo max. di	
			Dmin.	Dmax.							rampa	
401001	00-99321-010-1320	BC10-HD11-1320	13	20	11	30	40	80	10	N9MX04T002	20°	
402001	00-99321-012-1525	BC12-HD13-1525	15	25	13	36	50	100	12	N9MX05T103	20°	
403001	00-99321-016-2030	BC16-HD17-2030	20	30	17	50	60	110	16	N9MX070204	20°	
404001	00-99321-020-2540	BC20-HD22-2540	25	40	22	60	70	125	20	N9MX100306	20°	
405001	00-99321-025-3050	BC25-HD27-3050	30	50	27	75	85	165	25	N9MX12T308	20°	

▶ Gambo a bloccaggio laterale >>


- Realizzato in acciaio altamente legato e temprato 48 HRC.
- · Con refrigerante interno.
- Forma speciale disponibile a richiesta.

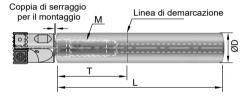
Codice	Numero di parte	Tipo	Capacità di foratura Ø mm		ØDc	L	L1	Ød	Prof.	Tipo inserto	Angolo max. di
Cource			Dmin.	Dmax.					Max.		rampa
405002	00-99321-025-4265	SL25-HD33-4265	42	65	33	130	74	25	50	N9MX12T308	9°

▶ Testina con attacco filettato >>

- Realizzato in acciaio altamente legato e temprato 42 HRC.
- Con refrigerante interno.
- L'attacco filettato è compatibile con quasi tutti i portautensili e le prolunghe in commercio.
- Utilizzato per allargare il foro.

* Usare una chiave a forchetta

per bloccare l'utensile

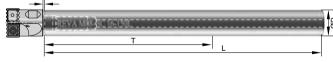

Codice	Numero di parte	Tipo	Capac foratura Dmin.			L	M	DPM	Ød1	sw	Tipo inserto	Angolo max. di rampa
421001	00-99323-010-1320	M05-HD11-1320	13	20	11	20	M5	5.5	10	8	N9MX04T002	20°
422001	00-99323-012-1525	M06-HD13-1525	15	25	13	25	M6	6.5	12	10	N9MX05T103	20°
423001	00-99323-016-2030	M08-HD17-2030	20	30	17	25	M8	8.5	16	14	N9MX070204	20°
424001	00-99323-020-2540	M10-HD22-2540	25	40	22	30	M10	10.5	20	18	N9MX100306	20°
425001	00-99323-025-3050	M12-HD27-3050	30	50	27	35	M12	12.5	25	23	N9MX12T308	20°

^{*} Forma speciale disponibile a richiesta.

Barra di estensione

▶ Tipo in acciaio >>

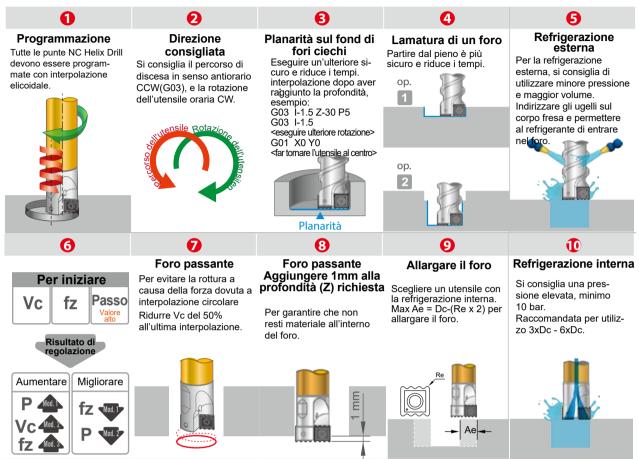
- T è la lunghezza massima di sporgenza.
- Con foro per la refrigerazione.



Codice	Numero di parte	Tipo	ØD	т	L	M	Coppia di serraggio per il montaggio
970100	00-99801-10S	BC10-075M05S	10	25	75	M5xP0.8	6.5 Nm
970122	00-99801-12S	BC12-075M06S	12	25	75	M6xP1.0	11.0 Nm
970161	00-99801-16S	BC16-090M08S	16	35	90	M8xP1.25	25.0 Nm
970202	00-99801-20S	BC20-100M10S	20	40	100	M10xP1.5	50.0 Nm
970253	00-99801-25S	BC25-120M12S	25	50	120	M12xP1.75	60.0 Nm

▶ Tipo in metallo duro (REVA) >>

- T è la lunghezza massima di sporgenza.
- Con foro per la refrigerazione.
- Barra di estensione in metallo duro con lunghezza dell'utensile superiore disponibile a richiesta.



Numero di parte	Tipo	ØD	т	L	M	Coppia di serraggio per il montaggio
0-398010-100M05	M05-BC10-100L	10	60	100	M5xP0.8	6.5 Nm
0-398012-100M06	M06-BC12-100L	12	60	100	M6xP1.0	11.0 Nm
0-398016-150M08	M08-BC16-150L	16	80	150	M8xP1.25	25.0 Nm
0-398020-200M10	M10-BC20-200L	20	100	200	M10xP1.5	50.0 Nm
0-398025-200M12	M12-BC25-200L	25	125	200	M12xP1.75	60.0 Nm

^{**} Barra di estensione Nine9 con rivestimento in TiN disponibile - consultare pagina 7-159.

Guida tecnica

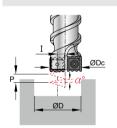
※ Prima di iniziare la lavorazione si prega di prestare attenzione alle seguenti condizioni >>

X Scegliere un utensile adatto.

- Il diametro del foro deve essere dentro la gamma consigliata (numeri blu).
- Per più fori di diametri diversi, scegliere l'utensile che può coprire più diametri.
- Per foratura 3xDc 6xDc, si consiglia la serie 99323.

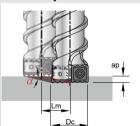
Esterna 30 mm 00-99321-010-1320 11 Interna 85 mm 00-99323-012-1525 13 Esterna 36 mm 00-99321-012-1525 13 Interna 105 mm 00-99323-016-2030 17	1 of foratura (ONDO ONDO,	or corrorgila la o	CHC 00020.					· II	Ae
13-15-20 Esterna 30 mm 00-99321-010-1320 11 N9MX04T002 0.2 1.58 10.6 3 Interna 85 mm 00-99323-012-1525 13 Esterna 36 mm 00-99321-012-1525 13 N9MX05T103 0.3 1.92 12.4 4				Tipo utensile	Dc	Tipo inserto	Re	Min. Ae	Max. Ae	Max. Ap
Esterna 30 mm 00-99321-010-1320 11 Interna 85 mm 00-99323-012-1525 13 Esterna 36 mm 00-99321-012-1525 13 Interna 105 mm 00-99323-016-2030 17	13 45-20	Interna	80 mm	00-99323-010-1320	11	NOMYOATOO2	0.2	1 50	10.6	3.5
15-20-25 Esterna 36 mm 00-99321-012-1525 13 Interna 105 mm 00-99323-016-2030 17	13-13-20	Esterna	30 mm	00-99321-010-1320	11	N9WA041002	0.2	1.50	10.0	3.3
Esterna 36 mm 00-99321-012-1525 13 Interna 105 mm 00-99323-016-2030 17	15 20 25	Interna	85 mm	00-99323-012-1525	13	NOMVOET402	0.2	4.00	10.4	4.3
	15-20-25	Esterna	36 mm	00-99321-012-1525	13	N9WXU511U3	0.3	1.92	12.4	4.3
	20-25-30	Interna	105 mm	00-99323-016-2030	17	N9MX070204	0.4	2.5	16.2	5.6
Esterna 50 mm 00-99321-016-2030 17	20-25-30	Esterna	50 mm	00-99321-016-2030	17	N9WX070204	0.4	2.5	10.2	5.0
Interna 130 mm 00-99323-020-2540 22 25-30-40 N9MX100306 0.6 3.3 20.8 7	2F 20 40	Interna	130 mm	00-99323-020-2540	22	NOMY100206	0.6	2.2	20.0	7.5
25-30-40 N9MX100306 0.6 3.3 20.8 7 Esterna 60 mm 00-99321-020-2540 22	25-30-40	Esterna	60 mm	00-99321-020-2540	22	NAMIY 100200	0.0	3.3	20.6	7.5
Interna 160 mm 00-99323-025-3050 27 30-40-50 N9MX12T308 0.8 4.17 25.4 9	20 40 50	Interna	160 mm	00-99323-025-3050	27	NOMV12T200	0.0	4 17	25.4	9
S0-40-50 Esterna 75 mm 00-99321-025-3050 27	30-40-50	Esterna	75 mm	00-99321-025-3050	27	N9WA121306	0.6	4.17	25.4	9
42-50-65 Interna 50 mm 00-99321-025-4265 33 N9MX12T308 0.8 4.17 31.4 9	42-50-65	Interna	50 mm	00-99321-025-4265	33	N9MX12T308	0.8	4.17	31.4	9

X Le punte NC Helix Drill si programmano usando "l'interpolazione elicoidiale" sulla macchina CNC; Il controllo CNC deve avere la funzione di movimento simultaneo dei 3 assi.


NC Helix Drill	Parametri di taglio (S & F)	Formula
	$S = \frac{Vc \times 1000}{D \times 1000}$ giri/min.	Dc = Diam. Punta mm
	Dc X π	D = Diam. Di foratura mm
	F = S x fz x Z mm/min.	L = Prof. Di foratura mm
	d = D - Dc mm	Vc = Velocità di taglio m/min.
	(D-Dc)	S = Giri giri/min.
ØDc	I = mm	I = Raggio circolare mm
P is a second	Tempo di lavorazione (T)	fz = Avanzamento mm/dente
· C>	π x d x L x 60	F = Avanzamento lineare mm/min.
L L	$T = \frac{\pi \times d \times L \times 60}{F \times P} sec.$	d = Diam. Circolare (D-Dc) mm
	Valuma aspartariona trusiala (O)	P = Passo dell'interpolazione elicoidale mm
ØD	Volume asportazione truciolo (Q)	T = Tempo di lavorazione sec.
	$Q = \frac{\pi \times D^2 \times L \times 60}{cm^3 / min}$	Q = Volume di truciolo asportato cm³ / min.
	4 x 1000 x T	Z = Dente dell'inserto

Velocità di avanzamento effettiva (fcut)

Dato che la potenza del mandrino è differente, consultare la presente tabella, fcut= fz x (PF) per ottenere la velocità di avanzamento effettiva.


Tipo di mandrino	BT-30	- potenza	ridotta	BT-40	- potenza	media	BT-50 - potenza elevata				
Potenza del mandrino (KW)	< 5	7	10	12	16	20	22	25	> 30		
Fattore di potenza (PF)	0.8	0.85	0.9	0.95	1	1.05	1.1	1.15	1.2		

Angolo di rampa

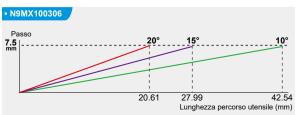
Rampa elicoidale (a) $\alpha = \tan^{-1} \frac{P}{(D-Dc) \times \pi} \operatorname{gradi}$

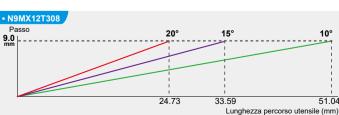
P < 2.2 x Raggio circolare (I) α < 20°

Rampa lineare (a)

$$\alpha = \tan^{-1} \frac{ap}{Lm} \operatorname{gradi}$$

Max. ap < 3/4 lunghezza inserto


X Lunghezza del percorso utensile per rampa lineare.


Lunghezza del percorso utensile per rampa circolare = (D-Dc) x 3.14

Parametri di taglio

	Tabella di suç	ggerimenti	
Potenza del mandrino	< 12 KW	12-20 KW	> 20 KW
Passo	Passo ridotto	Passo medio	Passo superiore

▶00-99321-010-1320 / 00-99323-010-1320 >>

		Vc r	n/min.			Ø16			Ø20						
	Materiale lavorato	99321	99323	fz mm/dente	ı	Passo	0	fz mm/dente	Passo mm			fz mm/dente	F	Passo	
	Acciai al carbonio 0.25%C	120	200	0.025	0.60	0.80	1.00	0.055	0.90	1.20	1.50	0.08	1.20	1.60	2.00
	Acciai al carbonio 0.45% C	120	200	0.025	0.60	0.80	1.00	0.055	0.90	1.20	1.50	0.08	1.20	1.60	2.00
P	Acciai al carbonio 0.60%C	100	150	0.025	0.60	0.75	0.90	0.05	0.80	1.10	1.35	0.07	1.00	1.40	1.80
	Acciaio bassamente legato	70	120	0.02	0.50	0.65	0.80	0.05	0.70	0.95	1.20	0.06	1.00	1.30	1.60
	Acciaio altamente legato	60	90	0.02	0.50	0.65	0.80	0.05	0.70	0.95	1.20	0.06	1.00	1.30	1.60
M	Acciaio inossidabile	60	90	0.02	0.50	0.65	0.80	0.05	0.70	0.95	1.20	0.06	1.00	1.30	1.60
K	Ghisa	70	120	0.025	0.60	0.80	1.00	0.055	0.90	1.20	1.50	0.08	1.20	1.60	2.00
N	Alluminio	345	500	0.025	0.90	1.20	1.50	0.055	1.30	1.80	2.25	0.08	1.80	2.40	3.00
, i	Rame	200	400	0.025	0.70	0.95	1.20	0.055	1.00	1.40	1.80	0.08	1.40	1.90	2.40
s	Leghe Nickel	20	28	0.01	0.50	0.65	0.80	0.015	0.70	0.95	1.20	0.03	0.90	1.30	1.60
3	Titanio	40	60	0.01	0.50	0.65	0.80	0.015	0.70	0.95	1.20	0.03	0.90	1.30	1.60
Н	Temprato	60	90	0.02	0.50	0.65	0.80	0.05	0.70	0.95	1.20	0.06	1.00	1.30	1.60

▶00-99321-012-1525 / 00-99323-012-1525 >>

		Vc n	n/min.		Ø15				Ø20			Ø25			
	Materiale lavorato	99321	99323	fz mm/dente	F	Passo	0	fz mm/dente	F	Passo	0	fz mm/dente	Passo		D
	Acciai al carbonio 0.25%C	120	200	0.035	1.20	1.60	2.00	0.065	1.50	2.00	2.50	0.09	1.80	2.40	3.00
	Acciai al carbonio 0.45% C	120	200	0.035	1.20	1.60	2.00	0.065	1.50	2.00	2.50	0.09	1.80	2.40	3.00
P	Acciai al carbonio 0.60%C	100	150	0.03	1.10	1.50	1.80	0.06	1.30	1.78	2.25	0.08	1.60	2.15	2.70
	Acciaio bassamente legato	70	120	0.025	1.00	1.30	1.60	0.05	1.20	1.60	2.00	0.07	1.40	1.90	2.40
	Acciaio altamente legato	60	90	0.025	1.00	1.30	1.60	0.05	1.20	1.60	2.00	0.07	1.40	1.90	2.40
M	Acciaio inossidabile	60	90	0.025	1.00	1.30	1.60	0.05	1.20	1.60	2.00	0.07	1.40	1.90	2.40
K	Ghisa	70	120	0.035	1.20	1.60	2.00	0.065	1.30	1.90	2.50	0.09	1.80	2.40	3.00
N	Alluminio	345	500	0.035	1.80	2.00	2.20	0.065	2.20	2.98	3.75	0.09	2.70	3.60	4.30
IN	Rame	200	400	0.035	1.40	1.90	2.20	0.065	1.80	2.40	3.00	0.09	2.10	2.85	3.60
S	Leghe Nickel	20	28	0.0125	1.00	1.30	1.60	0.0225	1.20	1.60	2.00	0.03	1.40	1.90	2.40
3	Titanio	40	60	0.0125	1.00	1.30	1.60	0.0225	1.20	1.60	2.00	0.03	1.40	1.90	2.40
Н	Temprato	60	90	0.025	1.00	1.30	1.60	0.05	1.20	1.60	2.00	0.07	1.40	1.90	2.40

Parametri di taglio

Tabella di suggerimenti									
Potenza del mandrino	< 12 KW	12-20 KW	> 20 KW						
Passo	Passo ridotto	Passo medio	Passo superiore						

▶00-99321-016-2030 / 00-99323-016-2030 >>

		Vc n	n/min.		Ø20				Ø25			Ø30			
	Materiale lavorato	99321	99323	fz mm/dente	F	Passo	0	fz mm/dente	Passo mm			fz mm/dente	Passo mm)
	Acciai al carbonio 0.25%C	120	200	0.04	1.80	2.40	3.00	0.08	2.10	2.80	3.50	0.105	2.40	3.20	4.00
	Acciai al carbonio 0.45% C	120	200	0.04	1.80	2.40	3.00	0.08	2.10	2.80	3.50	0.105	2.40	3.20	4.00
P	Acciai al carbonio 0.60%C	100	150	0.035	1.60	2.15	2.70	0.07	1.90	2.55	3.20	0.09	2.10	2.85	3.60
	Acciaio bassamente legato	70	120	0.03	1.40	1.90	2.40	0.065	1.60	2.20	2.80	0.08	1.90	2.55	3.20
	Acciaio altamente legato	60	90	0.03	1.40	1.90	2.40	0.065	1.60	2.20	2.80	0.08	1.90	2.55	3.20
M	Acciaio inossidabile	60	90	0.03	1.40	1.90	2.40	0.065	1.60	2.20	2.80	0.08	1.90	2.55	3.20
K	Ghisa	70	120	0.04	1.80	2.40	3.00	0.08	2.10	2.80	3.50	0.105	2.40	3.20	4.00
N	Alluminio	345	500	0.04	2.70	3.00	3.40	0.08	3.10	4.05	5.00	0.105	3.60	4.80	5.60
, in	Rame	200	400	0.04	2.10	2.85	3.40	0.08	2.50	3.35	4.20	0.105	2.80	3.80	4.80
S	Leghe Nickel	20	28	0.015	1.40	1.90	2.40	0.03	1.60	2.20	2.80	0.04	1.90	2.55	3.20
	Titanio	40	60	0.015	1.40	1.90	2.40	0.03	1.60	2.20	2.80	0.04	1.90	2.55	3.20
Н	Temprato	60	90	0.03	1.40	1.90	2.40	0.065	1.60	2.20	2.80	0.08	1.90	2.55	3.20

▶00-99321-020-2540 / 00-99323-020-2540 >>

		Vc n	n/min.		Ø25				Ø32			Ø40			
	Materiale lavorato	99321	99323	fz mm/dente	F	Passo)	fz mm/dente	Passo mm			fz mm/dente	Passo mm		0
	Acciai al carbonio 0.25%C	120	200	0.05	1.80	2.40	3.00	0.095	2.40	3.20	4.00	0.12	3.00	4.00	5.00
	Acciai al carbonio 0.45% C	120	200	0.05	1.80	2.40	3.00	0.095	2.40	3.20	4.00	0.12	3.00	4.00	5.00
P	Acciai al carbonio 0.60%C	100	150	0.04	1.60	2.15	2.70	0.08	2.20	2.90	3.60	0.11	2.70	3.60	4.50
	Acciaio bassamente legato	70	120	0.035	1.40	1.90	2.40	0.07	1.90	2.55	3.20	0.095	2.40	3.20	4.00
	Acciaio altamente legato	60	90	0.035	1.40	1.90	2.40	0.07	1.90	2.55	3.20	0.095	2.40	3.20	4.00
M	Acciaio inossidabile	80	90	0.035	1.40	1.90	2.40	0.07	1.90	2.55	3.20	0.095	2.40	3.20	4.00
K	Ghisa	70	120	0.05	1.80	2.40	3.00	0.095	2.40	3.20	4.00	0.12	3.00	4.00	5.00
N	Alluminio	345	500	0.05	2.70	3.00	3.40	0.095	3.60	4.80	6.00	0.12	4.50	6.00	7.50
IN	Rame	200	400	0.05	2.10	2.85	3.40	0.095	2.90	3.85	4.80	0.12	3.60	4.80	6.00
S	Leghe Nickel	40	50	0.02	1.40	1.90	2.40	0.035	1.90	2.55	3.20	0.045	2.40	3.20	4.00
3	Titanio	80	90	0.02	1.40	1.90	2.40	0.035	1.90	2.55	3.20	0.045	2.40	3.20	4.00
Н	Temprato	80	90	0.035	1.40	1.90	2.40	0.07	1.90	2.55	3.20	0.095	2.40	3.20	4.00

Parametri di taglio

Tabella di suggerimenti									
Potenza del mandrino	< 12 KW	12-20 KW	> 20 KW						
Passo	Passo ridotto	Passo medio	Passo superiore						

▶00-99321-025-3050 / 00-99323-025-3050 >>

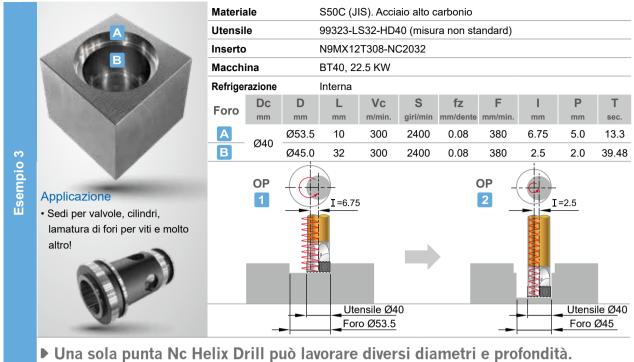
		Vc n	n/min.		Ø30				Ø40			Ø50			
	Materiale lavorato	99321	99323	fz mm/dente	ı	Passo	0	fz mm/dente	Passo mm			fz mm/dente	Passo mm		0
	Acciai al carbonio 0.25%C	120	200	0.055	2.40	3.00	3.40	0.12	3.00	4.00	5.00	0.135	3.60	4.80	6.00
	Acciai al carbonio 0.45% C	120	200	0.055	2.40	3.00	3.40	0.12	3.00	4.00	5.00	0.135	3.60	4.80	6.00
P	Acciai al carbonio 0.60%C	100	150	0.05	2.20	2.90	3.40	0.10	2.70	3.60	4.50	0.12	3.20	4.30	5.40
	Acciaio bassamente legato	70	120	0.04	1.90	2.55	3.20	0.09	2.40	3.20	4.00	0.11	2.90	3.85	4.80
	Acciaio altamente legato	60	90	0.04	1.90	2.55	3.20	0.09	2.40	3.20	4.00	0.11	2.90	3.85	4.80
M	Acciaio inossidabile	60	90	0.04	1.90	2.55	3.20	0.09	2.40	3.20	4.00	0.11	2.90	3.85	4.80
K	Ghisa	70	120	0.055	2.40	3.00	3.40	0.115	3.00	4.00	5.00	0.135	3.60	4.80	6.00
N	Alluminio	345	500	0.055	2.50	3.00	3.40	0.115	4.50	6.00	7.50	0.135	5.40	7.20	9.00
, and	Rame	200	400	0.055	2.50	3.00	3.40	0.115	3.60	4.80	6.00	0.135	4.30	5.75	7.20
S	Leghe Nickel	20	28	0.02	1.90	2.55	3.20	0.045	2.40	3.20	4.00	0.055	2.90	3.85	4.80
	Titanio	40	60	0.02	1.90	2.55	3.20	0.045	2.40	3.20	4.00	0.055	2.90	3.85	4.80
Н	Temprato	60	90	0.04	1.90	2.55	3.20	0.09	2.40	3.20	4.00	0.11	2.90	3.85	4.80

▶00-99321-025-4265 >>

		Vc m/min.		Ø42				Ø55				Ø65		
	Materiale lavorato	99321	fz mm/dente	I	Passo	0	fz mm/dente	F	Passo	0	fz mm/dente	Passo mm		0
	Acciai al carbonio 0.25%C	200	0.08	3.00	3.60	4.40	0.12	3.30	4.40	5.50	0.135	3.60	4.80	6.00
	Acciai al carbonio 0.45% C	150	0.08	3.00	3.60	4.40	0.12	3.30	4.40	5.50	0.135	3.60	4.80	6.00
P	Acciai al carbonio 0.60%C	130	0.075	2.70	3.60	4.40	0.11	3.00	4.00	5.00	0.12	3.20	4.30	5.40
	Acciaio bassamente legato	120	0.065	2.40	3.20	4.00	0.095	2.60	3.50	4.40	0.11	2.90	3.85	4.80
	Acciaio altamente legato	90	0.065	2.40	3.20	4.00	0.095	2.60	3.50	4.40	0.11	2.90	3.85	4.80
M	Acciaio inossidabile	90	0.065	2.40	3.20	4.00	0.095	2.60	3.50	4.40	0.11	2.90	3.85	4.80
K	Ghisa	120	0.08	3.00	3.60	4.40	0.12	3.30	4.40	5.50	0.135	3.60	4.80	6.00
N	Alluminio	500	0.08	4.00	4.20	4.40	0.12	4.90	6.55	8.20	0.135	5.40	7.20	9.00
	Rame	200	0.08	3.60	4.00	4.40	0.12	4.00	5.30	6.60	0.135	4.30	5.75	7.20
S	Leghe Nickel	28	0.03	2.40	3.20	4.00	0.045	2.60	3.50	4.40	0.055	2.90	3.85	4.80
	Titanio	90	0.03	2.40	3.20	4.00	0.045	2.60	3.50	4.40	0.055	2.90	3.85	4.80
Н	Temprato	90	0.065	2.40	3.20	4.00	0.095	2.60	3.50	4.40	0.11	2.90	3.85	4.80

Esempio di impiego

▶ Geometria speciale dell'inserto per lavorazione di diversi materiali >>


- Il tagliente seghettato rende il truciolo corto e piccolo, più facile da evacuare.
- Consigliato per quasi tutti i tipi di materiale, ottimo per forare materiali che generano trucioli lunghi e molli.

▶ Gradi consigliati per risultato migliore >>

	Diametro (mm)		_	25					
	· ,								
	Lunghezza (mm)			50					
	Utensile (Dc=17mm)		00-99	99321-016-2030 (Lubrificazione esterna)					
			P \cciao al carbonio	M cciaio inossidabile	H Acciaio temprato				
	Materiale	DIN	C45E	X5CrNi18-10	X40CrMoV5 1				
	iviater late	SAE	1045	304	H13				
		JIS	S45C	SUS304	SKD61 (HRC50°)				
0 2	Grado inserto		NC5072 (P40, TiAIN)	NC5072 (P40, TiAIN)	NC2032 (K20F, TiAIN)				
idu	N. taglienti		2	2	2				
Esempio	Vc = (m/min.)		120	60	80				
ш	S = giri/min.		2250	1120	1500				
	fz = (mm/dente)		0.1	0.065	0.05				
	F = (mm/min.)		450	146	150				
	Passo = (mm)		5.6	3	3				
	Carico macchina = % (BT40,	22.5KW)	35%	20%	20%				
	Durata iserto (fori)		150	108	18				
	Volume truciolo (cm³/min.)		52.66	8.55	8.77				

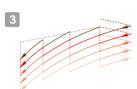
▶ Fare un foro a gradino Ø 53,5 & Ø45 con un solo utensile >>

ona sola punta No Henx Dini puo lavolare diversi diametri e proionata.

► Una sola punta può lavorare diversi diametri e profondità, fino a 6xDc >>

▶ Richiesta bassa potenza del mandrino! Macchina BT30, Foro Ø30mm, Profondità 3.3xDc >>


Lo scopo principale di questo esempio è migliorare l'efficienza di lavorazione.


		•		0									
	La foratura	mass	massima su una macchina da 5.5Kw è Ø16mm										
		Materi	ale		S50C (JIS), Acciaio alto carbonio								
	-60	Utensi	le		00-99321-020-2540 / BC20-HD22-2540								
	Esempio 5	Inserto)		N9MX100306-NC2032								
		Macchina			BT30, 5	.5 KW							
dwa		Refrigerazione			Esterna								
Si l		Dc	D	L	Vc	S	fz	fcut	F	-1	Р	Т	
	iii e	mm	mm	mm	m/min.	giri/min	mm/dente	mm/dente	mm/min.	mm	mm	sec.	
		Ø22	Ø30	60	200	* 2893	0.12	0.1	600	4	2.8	62	
		* Utilizzati 3000 giri/min.											

▶ Un solo utensile può eseguire diversi percorsi >> (Programmazione a titolo esemplificativo, senza riferimento ai parametri di taglio)

			Esempi	o 6								
	Materia	le	AL6061T6									
1 2	Utensil	е	00-99323-0	16-2030 M08	3-HD17-2030							
	Inserto		N9MX07020	04-NC5072								
3	Macchi	na	HAAS VM-3	HAAS VM-3, BT40, 22.5KW								
	Refriger	azione	Interna	Interna								
	Fig.	Dc mm	Vc m/min.	S giri/min	fz mm/dente	F mm/min.	P	T sec.				
he with the	1		200	3800	0.075	570	4	67				
	2	Ø17	200	3800	0.075	570	4	95				
	3		200	3800	0.075	570	4	80				
Percorso utensile												

G28 (G28 (G28 (G28 (G28 (G28 (G28 (G28 (G90 X0. K18. Y-2(G90 X0. G.5 (X1) G.5 (X1) G.5 (X2) 1.5 (X2= L. (Y) G.0 (Z1-1) G.0 (Z1-1) G	/0 Y0.). Y0I) -I) 1-2) 1-1) 1-2) 1-1) 1-2) 2#3-DO eepth/P# 2#3-DO EZ#16-E Y#2 (M08) #8 (Holes #18	WN Pitch P#9) DOWN Pit	
G00 (390 Z20 390 Z30 391 Z0.	. M09		

G28 G91 Y0.

#13= #13 - #9

#17= #17 - #19

G03 I#11 Z#13 F#5

G03 I#7 Z#17 F#15

M30

M99

M99

%

N2000

N1000

G40 G80 G69 G28 G91 Z0 G28 G91 X0 Y0 G00 G90 G126 G00 G90 X0. Y0. G52 X0. Y0. G00 G90 X0. Y0. T5 M06 #12= 1.0 (Z-UP) #13= 0.0 (Z1) #14= -1.512 (Z2) #15= -2.608 (Z3) #16= -2.904 (Z4) #17= -4.0 (Z5-1) (Z2-1) #4= 190.0 (F1) #5= 570.0 (F2) #7= -6.5 (X2=-I) #18= -12.0 (Z2-2) #19= 4.0 (P2=Z#17-DOWN PITCH) G00 G90 X25. Y-51. M88 ch) S3800 M03 G43 H05 Z30. (M08) Z10. G01 Z#12 F#4 M97 P1000 L2 G01 X35.757 Y-55.924 F#4 G03 X35.757 Y-46.076 R-6.5 G02 X15.537 Y-49.599 R20. G03 X15.537 Y-52.401 R-1.5 G02 X35.757 Y-55.924 R20. G01 X46.5 Y-51. M97 P2000 L3 G03 I#7 F#4 G01 X40. Y-51. G00 G90 Z10. M05 G00 G90 Z20, M89 G00 G90 Z30. M09 G28 G91 Z0. M05 MOO G28 G91 Y0. M30 G01 X35.757 Y-55.924 Z#13 G03 X35.757 Y-46.076 R-6.5

7#14 F#5

G02 X15.537 Y-49.599 R20. Z#15 G03 X15.537 Y-52.401 R-1.5 Z#16 G02 X35.757 Y-55.924 R20. Z#17 #13= #13 - 4.0 #14= #14 - 4.0 #15= #15 - 4.0 #16= #16 - 4.0 #17= #17 - 4.0 M99 N2000 G03 I#7 Z#18 F#5 #18= #18 - #19 M99 %

G40 G80 G69 G28 G91 Z0 G28 G91 X0 Y0 G00 G90 G126 G00 G90 X0. Y0. G52 X0. Y0. G00 G90 X0. Y0. T5 M06 #1= 4.0 (Z up) #2 = 0.0 (Z1)#3 = -4.0(Z2)#4= 210.0 (F1) #5= 420.0 (F2) #6= 4.0 (Z#13-Pitch) G00 G90 X92.56 Y-14.507 M88 S2800 M03 G43 H05 Z30. (M08) Z10. M97 P1000 L5 (Z-Pitch) G00 G90 Z30. M05 M09 M89 G28 G91 Z0. M05 M00 G28 G91 Y0. M30

N1000

%

G00 G90 X92.56 Y-14.507 G01 Z#1 F#4 G02 X108.5 Y-20.416 Z#2 R72. F#5 G03 X92.56 Y-14.507 Z#3 R72. F#5 G01 Z#2 G03 X75.679 Y-12.5 Z#3 R72. F#5 G01 Z#2 G03 X58.798 Y-14.507 Z#3 R72. G01 Z#2 G03 X42.858 Y-20.416 Z#3 R72. F#5 G01 Z#2 G00 G90 Z5. #1= #1 - #6 (Z up) #2= #2 - #6 (Z1.) #3= #3 - #6 (Z2.) M99